亚洲精品综合日韩中文字幕网站_精品综合久久久久97_中文在线天堂网www_久久精品免费一区二区三区_91久久国产综合精品女同国语_久久资源总站在线国产成人

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊

當前位置:
美國布魯克海文儀器公司>資料下載>測量應用案例-20200507

資料下載

測量應用案例-20200507

閱讀:138          發(fā)布時間:2020-5-20
提 供 商 美國布魯克海文儀器公司 資料大小 4MB
資料圖片 下載次數(shù) 28次
資料類型 PDF 文件 瀏覽次數(shù) 138次
免費下載 點擊下載    
 文獻名: Boron removal by electrocoagulation: Removal mechanism, adsorption models and factors influencing removal

 

作者 Ming Chena,b, Orion Dollara, Karen Shafer-Peltierb, Stephen Randtkea, Saad Waseemc, Edward Peltiera

a    Department of Civil, Environmental and Architectural Engineering, University of Kansas, Lawrence, KS, 66045, USA

b    Tertiary Oil Recovery Program, University of Kansas, Lawrence, KS, 66045, USA

c    Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA

 

摘要:Boron (B), normally present in ground water and sea water, is a vital micronutrient for plants, but is also toxic in excessive amounts. Under typical conditions, aqueous boron is present as boric acid (H3BO3), which is uncharged, making B particularly challenging to remove by mechanisms commonly applicable to removal of trace constituents. Adsorption of B onto aluminum hydroxide solids (Al(OH)3(s)) generated using aluminum-based electrocoagulation (EC) is a promising strategy for B removal. Infrared spectroscopy analysis indicated complexation of B(OH)3 with aluminum hydroxide solids via surface hydroxyl groups, while X-ray and infrared spectroscopy results indicated that the structure of the Al(OH)3(s) was influenced both by EC operating conditions and by water quality. A linear adsorption model predicted B removal well when initial concentrations were lower than 50 mg/L, but fit the experimental data poorly at higher initial B concentrations. The Langmuir adsorption model provided a good fit for a broader range of initial B concentrations (5–1000 mg/L). Factors affecting B adsorption during the EC process, including current intensity, Al dissolution rate, boron concentration, pH, and total dissolved solid (TDS), were investigated. Increasing current intensity initially led to a higher Al dissolution rate, and therefore higher B adsorption, but there was a limit, as further increases in current intensity caused rapid formation of Al(OH)3(s) having a large particle size and a low capacity to complex B. Boron removal decreased as its concentration increased. The best removal of B occurred at pH 8, corresponding to a slightly positive zeta potential for aluminum hydroxide and a small but significant fraction of negatively charged B species. Higher TDS concentrations facilitated the use of higher current intensities, i.e., the limit on the effective Al dissolution rate increased with increasing TDS. Two real water samples (river water and oilfield produced water) spiked with B were treated using EC, resulting in up to 50% B removal from river water (C0 = 10 mg/L, current = 0.2 A) in 2 h, and 80% B removal from produced water (C0 = 50 mg/L, current = 1.0 A) in 2 h.

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復您~

對比框

產(chǎn)品對比 產(chǎn)品對比 聯(lián)系電話 二維碼 意見反饋 在線交流

掃一掃訪問手機商鋪
010-62081908
在線留言
合水县| 古蔺县| 娄烦县| 铜陵市| 将乐县| 思茅市| 通许县| 柳林县| 梓潼县| 大宁县| 孝感市| 土默特右旗| 桃江县| 沧源| 衡山县| 永州市| 济阳县| 宣汉县| 堆龙德庆县| 资溪县| 舟曲县| 明水县| 德阳市| 霍林郭勒市| 金坛市| 华阴市| 天峻县| 宜都市| 荥经县| 清镇市| 买车| 全椒县| 隆德县| 安塞县| 汤原县| 陈巴尔虎旗| 新营市| 淮北市| 雅安市| 东乡| 拜泉县|