亚洲精品综合日韩中文字幕网站_精品综合久久久久97_中文在线天堂网www_久久精品免费一区二区三区_91久久国产综合精品女同国语_久久资源总站在线国产成人

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊(cè)

當(dāng)前位置:
美國(guó)布魯克海文儀器公司>技術(shù)文章>測(cè)量應(yīng)用案例-20220701

技術(shù)文章

測(cè)量應(yīng)用案例-20220701

閱讀:184          發(fā)布時(shí)間:2022-7-26
 

文獻(xiàn)名: Impact of phosphate adsorption on the mobility of PANI-supported nano zero-valent iron

 

 

作者 Dantong Lin1,Scott Bradford2,Liming Hu1,Irene M. C. Lo3

1 State Key Lab. of Hydro-Science and Engineering, Dep. of Hydraulic Engineering, Tsinghua Univ., Beijing100084, China

2 U.S. Salinity Lab., USDA-ARS, Riverside, CA 92507, USA

3 Dep. of Civil and Environmental Engineering, The Hong Kong Univ. of Science and Technology, Clear Water Bay, Sai Kung, Hong Kong, China

 

摘要:Nano zero-valent iron (nZVI) has been used for in situ groundwater remediation due to its strong adsorption and reaction characteristics. However, oxyanion contaminants in groundwater can ready adsorbed onto the surface of nZVI. This can potentially alter the mobility of nZVI and create a secondary pollution source, but these issues have not yet been systematically investigated. In this study, polyaniline-supported nZVI (PnZVI) and phosphate-sorbed PnZVI (PS-PnZVI) were synthesized in the laboratory. The sedimentation and transport behavior of these two nZVI particles were investigated, compared, and mathematically modeled to better understand the impact of phosphate adsorption on these processes. Results showed that phosphate adsorption can enhance the stability and mobility of PnZVI. Interaction energy calculations that considered van der Waals and magnetic attraction, electrostatic double layer and Born repulsion, and the influence of nanoscale roughness and binary charge heterogeneity were conducted to better infer mechanisms causing nZVI particle sedimentation and retention. Nanoscale roughness and binary charge heterogeneity were found to significantly decrease the energy barrier, but not to low enough levels to explain the observed behavior. The rapid settling of PnZVI was attributed to strong magnetic attraction between particles, which produced rapid aggregation and retention due to straining and/or hydrodynamic bridging. Phosphate adsorption enhanced the mobility of PS-PnZVI in comparison with PnZVI due to a decrease in particle size and aggregation, and an increase in the energy barrier with the porous media. A potential risk of nZVI particles to facilitate oxyanion contaminant transport was demonstrated for phosphate.

 

關(guān)鍵詞:

收藏該商鋪

請(qǐng) 登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

對(duì)比框

產(chǎn)品對(duì)比 產(chǎn)品對(duì)比 聯(lián)系電話 二維碼 在線交流

掃一掃訪問(wèn)手機(jī)商鋪
010-62081908
在線留言
长兴县| 兴仁县| 浮梁县| 满洲里市| 郎溪县| 龙泉市| 米林县| 怀柔区| 天台县| 绥江县| 涪陵区| 修水县| 祁阳县| 乌拉特前旗| 北京市| 平塘县| 成都市| 怀仁县| 图木舒克市| 安吉县| 合川市| 平南县| 岱山县| 车致| 临沧市| 和政县| 教育| 灌南县| 广汉市| 白山市| 乌苏市| 灌云县| 民丰县| 红原县| 随州市| 隆林| 嘉鱼县| 田阳县| 杭锦后旗| 长白| 江都市|