亚洲精品综合日韩中文字幕网站_精品综合久久久久97_中文在线天堂网www_久久精品免费一区二区三区_91久久国产综合精品女同国语_久久资源总站在线国产成人

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊(cè)

當(dāng)前位置:
美國布魯克海文儀器公司>技術(shù)文章>測(cè)量應(yīng)用案例-20220101

技術(shù)文章

測(cè)量應(yīng)用案例-20220101

閱讀:166          發(fā)布時(shí)間:2022-1-25
 文獻(xiàn)名:Development of a hydrogen peroxide-responsive and oxygen-carrying nanoemulsion for photodynamic therapy against hypoxic tumors using phase inversion composition method

 

作者 Liang HongJia ZhangJunxian GengJunle Qu and Liwei Liu

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China

 

 

摘要:Photodynamic therapy (PDT) has become an attractive tumor treatment modality because of its noninvasive feature and low side effects. However, extreme hypoxia inside solid tumors severely impedes PDT therapeutic outcome. To overcome this obstacle, various strategies have been developed recently. Among them, in situ oxygen generation, which relies on the decomposition of tumor endogenous H2O2, and oxygen delivery tactic using high oxygen loading capacity of hemoglobin or perfluorocarbons, have been widely studied. The in situ oxygen generation strategy has high specificity to tumors, but its oxygen-generating efficiency is limited by the intrinsically low tumor H2O2 level. In contrast, the oxygen delivery approach holds advantage of high oxygen loading efficiency, nevertheless lacks tumor specificity. In this work, we prepared a nanoemulsion system containing H2O2-responsive catalase, highly efficient oxygen carrier perfluoropolyether (PFPE), and a near-infrared (NIR) light activatable photosensitizer IR780, to combine the high tumor specificity of the in situ oxygen generation strategy and the high efficiency of the oxygen delivery strategy. This concisely prepared nanoplatform exhibited enhanced and H2O2-controllable production of singlet oxygen under light excitation, satisfactory cytocompatibility, and ability to kill cancer cells under NIR light excitation. This highlights the potential of this novel nanoplatform for highly efficient and selective NIR light mediated PDT against hypoxic tumors. This research provides new insight into the design of intelligent nanoplatform for relieving tumor hypoxia and enhancing the oxygen-dependent PDT effects in hypoxic tumors.

 

關(guān)鍵詞:

收藏該商鋪

請(qǐng) 登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

對(duì)比框

產(chǎn)品對(duì)比 產(chǎn)品對(duì)比 聯(lián)系電話 二維碼 意見反饋 在線交流

掃一掃訪問手機(jī)商鋪
010-62081908
在線留言
津南区| 济源市| 襄垣县| 道孚县| 长武县| 独山县| 济南市| 绵竹市| 吉水县| 汽车| 琼海市| 武定县| 瓮安县| 汶川县| 双桥区| 夏邑县| 仪征市| 时尚| 平安县| 鹰潭市| 和顺县| 平江县| 太康县| 内乡县| 六枝特区| 普宁市| 穆棱市| 锦屏县| 彩票| 三台县| 桦川县| 田林县| 东乌珠穆沁旗| 甘南县| 壤塘县| 平邑县| 宁远县| 广汉市| 静宁县| 井研县| 新津县|