亚洲精品综合日韩中文字幕网站_精品综合久久久久97_中文在线天堂网www_久久精品免费一区二区三区_91久久国产综合精品女同国语_久久资源总站在线国产成人

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊

當(dāng)前位置:
美國布魯克海文儀器公司>技術(shù)文章>測量應(yīng)用案例-20200802

技術(shù)文章

測量應(yīng)用案例-20200802

閱讀:138          發(fā)布時間:2020-8-12
 文獻(xiàn)名: Indium-modified Ga2O3 hierarchical nanosheets as efficient photocatalysts for the degradation of perfluorooctanoic acid

 

作者 Xianjun Tan,a   Guanhan Chen,b   Dingyu Xing,b   Wenhui Ding,a   Hao Liu,b   Ting Lic  and  Yuxiong Huang

a Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China

b Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, P. R. China

c Shenzhen Shenshui Longgang Water Group (Group) Co., Ltd. (LGWG), Shenzhen 518055, P. R. China

 

摘要:More and more attention has been redirected to per- and polyfluorinated alkyl substances (PFASs), particularly perfluorooctanoic acid (PFOA), owing to their ecotoxicity and environmental risks. As one of the major emerging and persistent contaminants in the environment, the current treatment processes could not remove PFOA efficiently. The recent advances in heterogeneous photocatalysis have demonstrated high efficiencies in degrading persistent contaminants, which provides an alternative approach for PFOA removal. Notably, Ga2O3-based photocatalysts exhibited great potential for PFOA remediation due to their high oxidizing capability and energy sustainability. Thus, Ga2O3 hierarchical nanosheets modified by a series of transition metals were rationally developed, and applied as heterogeneous photocatalysts for fast and efficient PFOA degradation. Noteworthily, the indium modified Ga2O3 hierarchical nanosheets achieved prominent PFOA decomposition activity, which can completely degrade 20 mg L−1 PFOA within 1 hour. The In–Ga2O3 hierarchical composites have dramatically enhanced the degradation kinetics for PFOA, which was 7.8 times higher than that of pristine Ga2O3. With in-depth mechanism investigation, we have demonstrated that In modification can not only enhance light harvesting and suppress photogenerated carrier recombination, but also favor the improvement of the adsorption ability for PFOA through the coexistence of monodentate and bidentate/bridging coordination modes. The transition metals–modification strategy paves the way for fabricating high-performance nanoscale photocatalysts for the removal of PFASs in water.

 

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復(fù)您~

對比框

產(chǎn)品對比 產(chǎn)品對比 聯(lián)系電話 二維碼 在線交流

掃一掃訪問手機(jī)商鋪
010-62081908
在線留言
宁海县| 张家界市| 安龙县| 通州区| 龙山县| 天峨县| 吴堡县| 大庆市| 洛扎县| 卢湾区| 安新县| 高雄市| 齐齐哈尔市| 鄄城县| 绿春县| 牡丹江市| 长岭县| 平罗县| 永城市| 淮阳县| 德保县| 织金县| 尉氏县| 昌吉市| 乌拉特前旗| 汝阳县| 托里县| 行唐县| 德保县| 大埔县| 汉中市| 酒泉市| 中卫市| 南华县| 襄樊市| 泗洪县| 家居| 临猗县| 宁都县| 苍山县| 汉阴县|