应用领域 | 化工,石油,电子/电池 |
---|
产品简介
详细介绍
产品特点:
?技术方案的测控结构一体化整体设计,具有峰值电压表、液晶显示工业计算机,可实现全自动控制测量分析。测控系统采用液晶触摸屏操作,具有多种状态提画面,实现了人机对话式的智能操作。系统取消了多芯控制电缆,采用光纤通讯线,无须开电缆沟,使得控制室布局更加简单方便。
?光纤控制传输它实现了控制测量设备与高压主体设备的光纤连接,有效地解决了高压试验中遇到的地电位抬高对测控系统的危害,排除了由控制引线导致的电磁干扰,提高了系统的可靠性,特别是在进行截波和陡波冲击试验时安全性更好。
?控制测量系统的操作界面充分考虑了高压试验的习惯特点,简单明了,便于试验人员操作。对于变压器类感性试品的冲击试验,考虑全波、截波,100%和50%电压水平的多种加压顺序,系统设计了专门的程序操作按钮,大大简化了试验人员的操作,可有效防止人为出错。
?对于绝缘子类容性试品的冲击试验,专门设计了升降法、多级法等程序自动控制,可非常方便地进行绝缘子的50%放电电压试验。
?自动化冲击电压发生器采用了*的技术,良好的工艺和优质的原材料,可保证长期使用,运行寿命大于20年。平时的运行成本也很低。
工作过程:
?自动化冲击电压发生器是一种产生模拟雷电流波形的冲击电流发生器。其工作过程是:先由变压器经硅堆向电容器组充电,当充电电压达预定值时,火花间隙被触发,电容经回路总电感和总电阻放电。当电阻大于或等于临界阻尼值时,在回路中产生单向的冲击电流波。当电阻小于临界阻尼值时,则产生振荡冲击电流波。冲击电流幅值的大小与回路参数有关,在相同的电容值与充电电压时,电感值越小,电流幅值就越大。为了获得尽可能大的电流,通常要选用电感值小的脉冲电容器,并在布置主电容器时连接线的总长度应尽可能短,使回路总电感值尽可能减小。
适用范围:
?变压器、电抗器、互感器及其它高压电器、高压晶闸管阀SVC(HVDC)、电力电缆、各类高压绝缘子、套管等试品的标准雷电冲击,雷电截断波,操作冲击及用户要求的非标准冲击波的各类冲击电压试验。一套设备就可产生多种试验波形(标准的和非标准的波形,用户提出来的波形)。
参数选择:
?为了使一台发生器也能产生方波冲击电流,听以在决定参数时也要考虑方波冲击电流情况:方波冲击电流的产生可以采用已被充电的电缆对负载放电来形成,但要利用电缆产生高电压大电流持续时间长的方波电流是很困难的,因此一般采用8-12链的人工线来产生,产生的方波较为接近电缆产生的方波,符合国标的要求。
故障判断:
?在进行变压器雷电冲击试验以后,还会进行工频耐压、倍频感应、局部放电、空载等试验项目,然而对于这些试验项目来讲,只是作为了一种辅助办法。
?由于变压器在工频耐压、感应以及雷电冲击作用下的绝缘特性有着非常大的差异,在某个地方发生了故障,梯度和冲击电位会非常高,其它试验试很难发现,并且冲击电压截波的电位是不一样的,而全波的绕组电位梯度也是不一样的,并且电位的分布也是不一样的,截波和全波基本上都是运用了各自范围试验的结果进行分析判断。
?电力变压器冲击试验的过程判断方法非常直观,对于变电力变压器冲击试验的过程判断方法非常直观,对于变压器油箱里面的声音,在变压器油箱里有烟类气体冒出来,变压器雷电冲击试验后,空载试验的损耗和空载电流明显增加。
?但是,电力变压器在进行雷电冲击试验的时候,如果变压器绕组有少部分发现了损伤现象,达到了轻微击穿的程度,以上现象根本看不出来。现在,判断冲击故障*基本的方法主要是波形比较法,也就是比较冲击试验在下降电压下以及全电压下的示伤电流波形和电压波形,看有没有发生畸变而进行分析判断。
?*近几年以来,技术人员再使用一个新的判断方法,函数传递法,这个方法刚被引进*冲击故障的检测进行研究,很多还需要进一步进行完善。
本体部分:
?本体每级额定电压±100kV;
?本体每级包括1台MWF50kV/1.0μF×2铁外壳油浸式脉冲电容器、波头电阻、波尾电阻和点火球隙等,当产生雷电波时根据试品电容量大小,选择适当的雷电波波头电阻、波尾电阻和数。
?波头电阻、波尾电阻均采用板形结构,无感绕制,波头电阻和波尾电阻均可互换;
?接头均为弹簧压接式,方便调波时的插拔且接触可靠;
?波头、波尾电阻支架可以由多支电阻同时并联使用;
?球隙采用单边同步点火脉冲装置触发,第二级至第三级球隙均采用椭圆球隙点火,同步误动率或拒动率不大于2%。
?各级球隙距离由电动机驱动作直线调整,装置噪音小,定位无惯性,准确、快速,控制显示对应球距的放电电压;
?本体支柱采用环氧树脂丝缠绕制造,高电位的部分采取抗老化和电晕的措施;
?本体尺寸长×宽×高约:2m×2m×2.2m,整个本体部分有活动轮架,便于随意移动;