应用领域 | 电子/电池 |
---|
产品简介
详细介绍
三级承装修试数字式局部放电检测仪产品特性:
1、局部放电是局部过热,电器元件和机械元件老化的预兆;
2、局部放电趋势是局放随着时间的上升指数;
3、在绝缘结构中产生局部放电时,会伴随产生电脉冲、超声波、电磁辐射、光、化学反应,并引起局部发热等现象;
由于局部放电存在以上特点,故电气设备如何避免局部放电、如何去除局部放电,从而使设备正常安全运行就成为电力设备维护人员zui多考虑的事情。为了去除这种潜伏性故障现象,目前针对伴随局部放电而产生的一些电脉冲、超声波、电磁辐射等信号而衍生出很多在线检测局部放电现象的方法。
三级承装修试数字式局部放电检测仪注意事项:
1. 在试验开始加压以前,试验人员必须详细而地检查一遍线路,以免线路接错。测试仪器处的接地线是否与接地体牢固连接,若连接不牢或在准备工作时掐头去尾线被脚踢断,这将可能引起人身和设备事故。
2.对于连接线应避免将*暴露在外,防止*电晕放电,尤其对于电压等级较高的局部放电试验,必要时要加粗高压连接线及加装防电晕罩,减小因场强过高引起的电晕放电。屏蔽罩不能与试品的瓷裙相接触。
3. 一般情况下,在试验过程中,被试品在耐压、预升压时局部放电量都比正常值大很多,此时仪器的仪表必然会超出满刻度。为防止仪器损坏,应将仪器的增益粗调旋钮逆时针旋转一档或更多档,以不超出满刻度为标准。当电压降至测量电压时,再将增益粗调开关顺时针旋转一档或更多档,以便记录测量值。
4. 校正电量发生器校正完毕后,一定要从高压端脱离,并关闭电源开关,且仪器的增益细调旋钮不可再调。因增益粗调开关每相邻两档之间的关系是十倍,且档位有指示,故升压后根据放电量大小,可选择合适量程。逆时针旋转时,每降一档量程扩大十倍;反之,顺时针时,量程缩小十倍。
5. 试验完毕后,应对整个测试系统再进行一次复查校正,验证是否与试验前所校正出的刻度系数相等,以免测试仪器或其它环节在试验过程中发生故障而使测试结果不对。
资质设备数字式局部放电检测仪干扰问题:
在局部放电测试中,往往由于外部干扰信号的影响,而使测试结果产误判断,或者使测试工作根本无法进行下去。尤其对从事局部放电测试工作经验不多的人,更容易引起误判断。因此,在局部放电测试技术中,消除外部干扰成为一项很重要的技术内容,同时也是花钱较多的一项技术措施。
(一) 外来干扰
1.与电源电压无关的干扰
这种干扰与电源电压(加至被试品上的电压)无关,它不随电源电压的升高或降低而变化。它产生于:电气开关的开闭操作、电焊起弧、吊车开动、整流电机的电刷、闪光灯、无线电电磁波以及各种工业干扰等等。这些干扰通过电源、测试回路和地线等途径侵入进来。
2. 电源电压有关的干扰
这类干扰一般随电源电压的增加而变大。它可由试区内各个部分产生。例如:试验变压器、高压引线、试品端部、高压试区的绝缘物体与地线(或接地金物)接触、试区内金属物体接、以及其它物体的感应放电等等。与电源电压有关的干扰的侵入途径,可以通过电源、高压导线、空间和地线侵入到测试回路内。
(二)消除外来干扰的方法
1. 消除与电源电压无关的干扰方法:应从电源、空间、接地方式几个方面采取措施。为了消除空间电磁波的干扰,应将试验室加以屏蔽。对于由电源侵入的干扰,一般在电源进口处加隔离变压器和滤波装置。消除由接地网来的干扰,应采取一点接地方式。
2. 消除与电源有关的干扰措施:可将高压导线加粗(用较粗的蛇皮管、薄铁皮圆筒或铝筒);对被试品端部加防晕罩;试区内各地线和金属物应良好接地;试区内的绝缘物体严禁与金属接地体接触;在高压线下部地面上不应有螺钉、地线头等金属物体。
测试方法:
局部放电的测试方法:
非电测法
(1)超声波比通常人耳可以听见的声波频率要高一些,特性与声波差不多。超声波在气体和液体中以纵波传播,而在固体中则以横波传播,这样就存在有表面波,因此对同一种固体物质,在各方面超声波传播的速度就会不相同。
利用超声波检测技术来测定局部放电的位置和放电程度,这种方法简单,不受环境条件限制。但灵敏度较低,不能直接定量,而且频率的超声波在空气中传播衰减很大,频率越高衰减的就越快,造成定位不准;超声波的波长较短,因此它的方向性较强,从而它的能量较为集中,也就是说它对于方向性有很好的鉴别能力,而且它还有个*的优点,即他可在试品外壳表面不带电的任意部位安装传感器,可较准确地测定放电位置,且接受的信号与系统电源没有电的联系,不会受到电源系统的电信号的干扰。所以在进行局部放电测量中当发现变压器有大于5000pc的故障放电,超声波测量方法常用于放电部位确定及配合电测法的补充手段。
(2)光检测法:
只有透明的介质才宜用光检测法,但该方法灵敏度较低,局限性大,较适合于检测暴露在外表面的电晕放电。
(3)热检测法
由于局部放电的放电会发热,当故障较严重时,局部热效应是明显的,可用预先埋入的热电偶来测量各点温升,从而确定局部放电部位。但灵敏度太低且不能定量。
(4)放电产物分析法:
油纸绝缘材料在局部放电作用下会分解产生各种气体,用色谱仪分析仪测量高压设备油中产生的微量可燃性气体,从而推断局部放电的程度。
电测法
(1)无线干扰测量法(RIV法)局部放电产生的脉冲信号频谱很宽,从几千赫到几十兆赫,故利用无线电干扰仪,通过试品两端直接耦合,测量试品局放电脉冲信号。
(2)放电能量法:局部放电伴随着能量损耗,可以用电桥来测量一周期的放电能量,或用微处理机直接测放电功率。
(3)脉冲电流法(模拟局放仪和数字局放仪):由于局部放电产生的电荷交换,产生高频电流脉冲,通过与试品连接的检测回路产生电压脉冲,将此电压脉冲经过合适的带宽放大器放大后由仪器测量或显示出来。灵敏度高,是目前电工委员会推荐进行局部放电测试的通用方法。
测试线路:并联法、串联法、平衡法
检测阻抗:RC型:当电容C较小时,检测阻抗上的波形与流过被试品的脉冲电流相似,但其频带较宽、噪声较大,被试品的工频充电电流大时使检测阻抗上工频分量不能*滤除,从而影响测量。RIC型:对局部放电脉冲检测有很高的灵敏度,而对被试品工频的充电电流呈现低阻抗,频带较窄,噪声水平较低。缺点是波形呈现震荡,但适当选择R(2-3kΩ)可使震荡阻尼抑制,所以普通采用RLC型检测阻抗。
技术参数:
1.可测试品的电容范围:6pF~250uF
2.检测灵敏度及允许电流(见表1)。
3.椭圆扫描时基
(1) 频率:50、100、150、200、400Hz
(2) 旋转:以30度为一档,可旋转120度。
(3) 工作方式:标准-扩展-直线。
(4) 高频时基椭圆的输入电压范围:13~275V。
4.显示单元
采用100×80mm矩形示波管,有亮度与聚焦调节旋钮。
5.放大器
(1) 3dB低频端频fL:20、40KHz任选。
(2) 3dB高频端频率fH:200、300KHz任选。
(3) 增益调节:粗调6档,档间增益差10倍±5%。
(4) 细调范围:>10倍。
(5) 正、负脉冲响应不对称性:<5%。
6.时间窗
(1) 窗宽:5度~150度(50Hz) 连续可调。
(2) 窗位置:每一窗可旋转0度~170度。
(3) 两个时间窗可分别或同时控制。
7、脉冲峰值表
(1) 线性指示:0~10*不大于5%。
指示:1~10*不大于5%。
表1 检测灵敏度及输入单元允许电流值